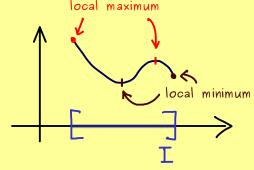
The Bright Side of Mathematics

Real Analysis - Part 40

<u>Definition:</u> $I \subseteq \mathbb{R}$ interval, $f: I \longrightarrow \mathbb{R}$.

(a) f has a local maximum at $x_o \in I$ if there is a neighbourhood of x_o , $U \subseteq \mathbb{R}$, with $f(x_o) = \max \{ f(x) \mid x \in U \cap I \}$

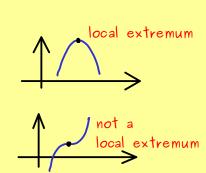
- (b) f has a <u>local minimum at $x_o \in I$ </u> if there is a neighbourhood of x_o , $U \subseteq \mathbb{R}$, with $f(x_o) = \min \{ f(x) \mid x \in U \cap I \}$
- (c) f has a local extremum at $x_0 \in I$ if f has a local maximum at $x_0 \in I$.





<u>Proposition:</u> $f: (a,b) \longrightarrow \mathbb{R}$ differentiable at $x_0 \in (a,b)$.

$$f$$
 has a local extremum at $x_0 \implies f'(x_0) = 0$

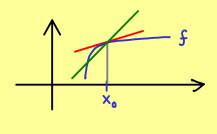


<u>Proof:</u> 1st case: f has a local maximum at x_0

$$\implies \text{ there is a neighbourhood of } x_o \text{ , } \mathcal{U} \subseteq (a,b)$$

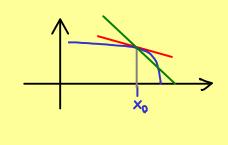
$$f(x_o) = \max \left\{ f(x) \mid x \in \mathcal{U} \right\}$$

$$f$$
 differentiable at $x_o \implies f(x) = f(x_o) + (x - x_o) \cdot \Delta_{f_i x_o}(x)$



Assume $f'(x_0) > 0$: There exists a neighbourhood $V \subseteq W$ such that $\Delta_{f,x_0}(x) > 0$ for all $x \in V$.

Then:
$$x > x_o \implies f(x) = f(x_o) + (x - x_o) \cdot \Delta_{f_i \times o}(x) > f(x_o)$$



Assume $f'(x_0) < 0$: There exists a neighbourhood $V \subseteq \mathcal{U}$ such that $\Delta_{\xi,x_0}(x) < 0$ for all $x \in V$.

Then:
$$x < x_0 \implies f(x) = f(x_0) + \underbrace{(x - x_0)} \cdot \Delta_{f_1 \times f_2}(x) > f(x_0)$$

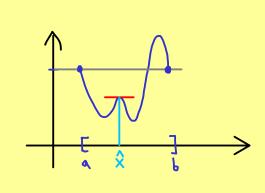
$$\implies f'(x_0) = 0$$

2nd case: f has a local minimum at x_0 (works similarly)

Theorem of Rolle

$$f: [a,b] \longrightarrow \mathbb{R}$$
 differentiable and $f(a) = f(b)$.

Then there is $\hat{x} \in (a,b)$ with $f'(\hat{x}) = 0$.



<u>Proof:</u> <u>1st case:</u> f constant $\implies f'(x) = 0$ for all $x \in [a,b]$.

2 nd case: f is not constant.

There are
$$x^-$$
, $x^+ \in [a,b]$ with $f(x^+) = \sup \{ f(x) \mid x \in [a,b] \}$
$$f(x^-) = \inf \{ f(x) \mid x \in [a,b] \}$$

f not constant $\implies x^{-} \in (a,b) \text{ or } x^{+} \in (a,b) \quad \left(\text{ call it } \hat{x}\right)$

Proposition above
$$\implies f'(\hat{x}) = 0$$