



Rolle's theorem

Now:
$$g(a) = g(b) \implies$$
 there is $\hat{x} \in (a, b)$ with $g'(\hat{x}) = 0$
$$\implies f'(\hat{x}) = \frac{f(b) - f(a)}{b - a}$$

Application:
$$f: [a, b] \rightarrow \mathbb{R}$$
 be differentiable. Assume $f'(x) > 0$ for all $x \in [a, b]$
Then: $X_{i} < X_{i}$
 $f: [x, x] \rightarrow \mathbb{R}$ there is $\hat{x} \in (x_{i}, x_{i})$ with $f'(\hat{x}) = \frac{f(x_{i}) - f(x_{i})}{X_{i} - x_{i}}$
 $\implies f(x_{i}) - f(x) = f(x) - f(x) = f'(\hat{x}) \cdot (x_{i} - x_{i}) > 0$
 $\implies f$ strictly monotonically increasing
(a) $f'(x) > 0$ for all $x \in [a, b] \implies f$ strictly monotonically increasing
(b) $f'(x) < 0$ for all $x \in [a, b] \implies f$ strictly monotonically decreasing
(c) $f'(x) \ge 0$ for all $x \in [a, b] \implies f$ monotonically increasing
(d) $f'(x) \le 0$ for all $x \in [a, b] \implies f$ monotonically decreasing