ON STEADY

The Bright Side of Mathematics

Real Analysis - Part 43

Generalisations of l'Hospital's rule

case "<u>**4**</u>"

(b) interval, , differentiable, case " $\underline{\infty}$ " **Then:** $\frac{f'(x)}{f'(x)}$ $f(x)$

(a) interval, differentiable, , $\beta^{(x)} \neq 0$ for $x \neq x_{0}$. Then: **,**

(c) interval (with no upper bound) differentiable, case "<u>**4**</u>" $\lim_{x\to\infty} f(x) = 0$, $\lim_{x\to\infty} g(x) = 0$. Then: $X \rightarrow \infty$

$$
\lim_{x \to x_0} \frac{f'(x)}{g'(x)}
$$
 exists $\implies \lim_{x \to x_0} \frac{f(x)}{g(x)}$ exists
and
$$
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}
$$

(d) I interval (with no upper bound), $f,g: I \rightarrow \mathbb{R}$ differentiable, **case "** ∞ " \mathbb{R}^1 . $X \rightarrow$

$$
\lim_{x \to x_0} \frac{\pi}{3^3(x)}
$$
 exists \implies $\lim_{x \to x_0} \frac{\pi}{3^3(x)}$ exists
and $\lim_{x \to x_0} \frac{\pi}{3^3(x)} = \lim_{x \to x_0} \frac{\pi}{3^3(x)}$

$$
\lim_{x \to \infty} \frac{f'(x)}{g'(x)} \text{ exists} \implies \lim_{x \to \infty} \frac{f(x)}{g(x)} \text{ exists}
$$
\nand\n
$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
$$

$$
\lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to \infty} g(x) = \infty. \quad \text{Then:} \quad \lim_{x \to \infty} \frac{f(x)}{g'(x)} \quad \text{exists} \quad \implies \quad \lim_{x \to \infty} \frac{f(x)}{g(x)} \quad \text{exists} \quad \lim_{x \to \infty} \frac{f(x)}{g(x)} \quad \text{exists} \quad \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
$$

Proof: (b) Use:
$$
\frac{d}{dx}(\frac{1}{x}) = -\frac{1}{x^2}
$$
 $(\frac{d}{dx}x^{-1} = (-1)\cdot x^{-2})$
\n
$$
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}
$$
\nDefine: $\tilde{f}(x) := \begin{cases} \frac{1}{f(x)} \cdot \int \ar x \in \Gamma \setminus \{x_0\} \\ 0 \cdot \int \ar x = x_0 \end{cases}$
\n(redo proof of l'Hospital's theorem)
\n
$$
\frac{\frac{1}{f(x)}}{\frac{1}{g(x)}} = \frac{\tilde{f}(x) - \tilde{f}(x_0)}{\tilde{g}(x) - \tilde{g}(x_0)} = \frac{\tilde{f}'(\hat{x}_0)}{\tilde{g}'(\hat{x}_0)} = \frac{\frac{f'(x_0)}{\tilde{g}'(\hat{x}_0)}}{\frac{f'(x_0)}{\tilde{g}'(\hat{x}_0)}}
$$

\n(c) $\int f(1) \cdot \int \ar x \, dx = x_0 \quad \text{where } x \in \Gamma$

$$
\text{Define: } \widetilde{f}(x) := \begin{cases} f(\frac{1}{x}) & , & \text{for } x > 0 , x^{\prime} \in I \\ 0 & , & \text{for } x = 0 \end{cases}
$$

$$
\frac{\text{Examples:} \quad (1)}{\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)} = \lim_{x \to 0} \left(\frac{x - \sin(x)}{x \cdot \sin(x)} \right) = \lim_{x \to 0} \left(\frac{1 - \cos(x)}{\sin(x) + x \cdot \cos(x)} \right)
$$
\n
$$
= \lim_{x \to 0} \left(\frac{\sin(x)}{\cos(x) + \cos(x) - x \cdot \sin(x)} \right) = 0
$$
\n
$$
\text{(2)} \quad (1 \quad x \quad \sqrt{\frac{1}{\sin(x)} \cdot \frac{1}{\cos(x)} \cdot \sin(x) + \cos(x) - x \cdot \sin(x)}} = 0
$$

$$
\begin{array}{cc}\n\text{(2)} & \lim_{x\to\infty} \left(\frac{x}{\exp(x)} \right) & = & \lim_{x\to\infty} \left(\frac{1}{\exp(x)} \right) = 0\n\end{array}
$$