ON STEADY

The Bright Side of Mathematics

Real Analysis – Part 44
$f: \mathbb{I} \rightarrow \mathbb{R}$ differentiable \sim $f': \mathbb{I} \rightarrow \mathbb{R}$
• If $f': \mathbb{I} \rightarrow \mathbb{R}$ is continuous \sim f continuously differentiable
• If $f': \mathbb{I} \rightarrow \mathbb{R}$ is differentiable \sim f two-times differentiable
$f^{(0)} := f^{(0)} := f^{(0)} := (f')': \mathbb{I} \rightarrow \mathbb{R}$
Definition: $f: \mathbb{I} \rightarrow \mathbb{R}$ and set $f^{(0)} := f$. For $n \in \mathbb{N}$, define $f^{(n)} := (f^{(n-1)})'$ (inductively)
• f is called <u>n-times differentiable</u> if $f^{(n)}$ exists.
• f is called <u>n-times continuously differentiable</u> if $f^{(n)}$ exists and is continuous.
• f is called <u>∞-times differentiable</u> if $f^{(n)} = \frac{d^n f}{dx^n} f$
• f is called <u>∞-times differentiable</u> if $f^{(n)}$ exists for all $n \in \mathbb{N}$.
• $f'(1) := \{f: \mathbb{I} \rightarrow \mathbb{R} \mid f$ continuous
• $f''(1) := \{f: \mathbb{I} \rightarrow \mathbb{R} \mid f \in \mathbb{N} \text{ continuous} \}$

 \Rightarrow There is a neighbourhood of x_0 , called $U \subseteq [\alpha, \beta]$, with $\Delta_{\mathfrak{z}_1^{\lambda} x_0}(x) > 0$ **for decreasing increasing**

Example:

$$
C(I) \supseteq C^1(I) \supseteq C^2(I) \supseteq C^3(I) \supseteq \cdots \supseteq C^{\infty}(I) \stackrel{\text{example. 1--m}}{\underbrace{\sim}_{exp}}
$$

Proposition: $f: [a, b] \rightarrow \mathbb{R}$ differentiable, $x_0 \in [a, b]$, $f'(x_0) = 0$, and \int_0^1 differentiable at X_0 . Then: (a) $\int_0^1 (x_0) > 0 \implies \int$ has a local minimum at X_0 (b) $f''(x_0) < 0 \implies f$ has a local maximum at x_0

Proof: (a) Assume
$$
0 < f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \Delta_{f'_1 x_0}(x)
$$
 continuous at x_0