ON STEADY

Real Analysis - Part 51 £

bounded

Use step functions $\phi \in \mathcal{S}([a, b])$: $\sup \begin{cases} \int \phi(x) dx & \phi \in S([a, b]), \phi \leq f \end{cases}$ $\inf \left\{ \int \phi(x) dx \quad \phi \in S([a, b]), \phi \ge f \right\}$

ላ

<u>Definition</u>: A bounded function $f: [a, b] \longrightarrow \mathbb{R}$ is called <u>Riemann-integrable</u> if

$$\sup \left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in S([a, b]), \phi \leq f \right\} = \inf \left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in S([a, b]), \phi \geq f \right\}$$

In this case: $\int f(x) dx$ is called the (Riemann) integral of