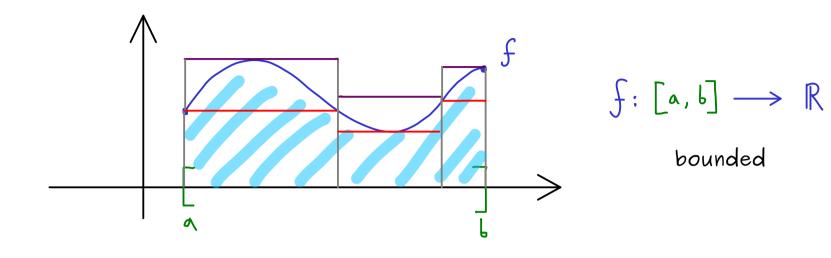


Real Analysis - Part 51



Use step functions $\phi \in S([a,b])$:

Sup
$$\left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in S([a,b]), \phi \leq f \right\}$$

 $\inf \left\{ \int_{a}^{b} \phi(x) dx \mid \phi \in S([a,b]), \phi \geq f \right\}$

<u>Definition</u>: A bounded function $f: [a, b] \longrightarrow \mathbb{R}$ is called <u>Riemann-integrable</u> if

$$\sup \left\{ \int_{a}^{b} \varphi(x) dx \middle| \varphi \in S([a,b]), \varphi \leq f \right\} = \inf \left\{ \int_{a}^{b} \varphi(x) dx \middle| \varphi \in S([a,b]), \varphi \geq f \right\}$$

In this case: $\int_{a}^{b} \frac{1}{f(x)} dx$ is called the (Riemann) integral of f