ON STEADY

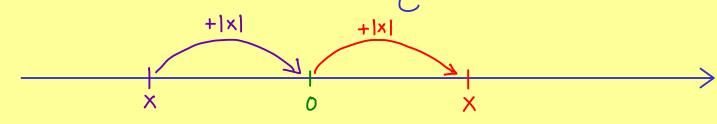
The Bright Side of Mathematics

Start Learning Reals - Part 1

> Real numbers R

Starting point: \square is the set of fractions \longrightarrow field and Archimedean order \leq X>0 , X<0

Absolute value: For $x \in \mathbb{Q}$ define: $|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$



How far away is x from 0 ? ~> |x|

Problem: There is no $x \in \mathbb{Q}$ with $x^1 = 2$

$$X_1 = \frac{14}{10} = \frac{7}{5} \qquad \Longrightarrow \qquad X_1^2 = \frac{49}{25} \approx 2$$

$$X_{i} = \frac{141}{100}$$
 \longrightarrow $X_{i}^{2} = \frac{13881}{10000} \approx 2$

$$X_3 = \frac{1414}{1000}$$
 $X_3^2 = \frac{433843}{250000} \approx 2$

distance:

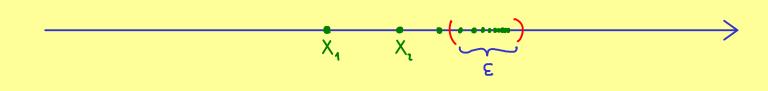
X5- X3

$$X_{4} = \frac{14142}{10000} \qquad \qquad X_{4}^{2} = \frac{49 339 041}{25 000 000} \approx 2$$

We consider a sequence $(x_n)_{n\in\mathbb{N}}$ (infinite list; formally: a map $\mathbb{N}\to\mathbb{Q}$, $n\mapsto x_n$) with the property:

 $\forall \epsilon \in \mathbb{Q} \quad \exists N \in \mathbb{N} \quad \forall n, m \in \mathbb{N} : \left(\epsilon > 0 \quad \wedge \quad n, m \ge N \quad \Longrightarrow |x_n - x_m| < \epsilon \right)$

In short: $\forall \epsilon > 0$ $\exists N \in \mathbb{N}$ $\forall n, m \geq N$: $|x_n - x_m| < \epsilon$ (*)



Cauchy sequence: sequence $(X_n)_{n \in \mathbb{N}}$ with $X_n \in \mathbb{R}$ and property (X)