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Start Learning Reals - Part 1

Real numbers 

Starting point: is the set of fractions field     Archimedean order

Absolute value: For         define: if

if

and

How far away is    from    ?

Problem: There is no         with

distance:

We consider a sequence (infinite list; formally: a map

with the property:

In short:

Cauchy sequence: sequence           with           and property



Start Learning Reals - Part 2

Absolute value in (multiplicative)

(triangle inequality)

Cauchy sequence: with

Convergent sequence: with

is called the limit of

neighbourhood of

Example: is a convergent sequence with limit

Important fact: Cauchy sequence Convergent sequence
not correct    but in 

Proof for
triangle
inequality

Let        be a convergent sequence with limit

Let Set

Since          is convergent, there is        such that:

Therefore for all

Cauchy 
sequence

Axiomatic solution: A non-empty set     together with operations        and ordering

is called the real numbers if it satisfies:

(A)  is an abelian group

(M)  is an abelian group

(D)  distributive law

(O)  is a total order, compatible with   and     Archimedean property

(C) Every Cauchy sequence is a convergent sequence. if

if

The complete, whole, full number line



Start Learning Reals - Part 3

Axioms of the reals: A non-empty set     together with operations        and ordering

is called the real numbers if it satisfies:

(A)  is an abelian group

(M)  is an abelian group

(D)  distributive law

(O)  is a total order, compatible with   and     Archimedean property

(C) Every Cauchy sequence is a convergent sequence. if

if

complete number line

Important facts: There is a set with all these properties (Existence) (Construction)
see next video

and it is uniquely determined by these properties.
(Uniqueness)

(Identification/
    Isomorphism)

Show: For all        , we have:                  (by only using the axioms).

Proof: (A)

inverse

(A)

neutral

(D)

(A)

associativity

(A)

inverse

(A)

neutral

Show: For all        , we have:                  (by only using the axioms).

Proof: (A)

neutral

(A)

inverse

(D) (A),(M) (A)

neutral



Start Learning Reals - Part 4

Construction: (Make every Cauchy sequence convergent)

            number line
Sequence: Cauchy sequence and convergent with limit

Sequence: Cauchy sequence and convergent with limit

and is a Cauchy sequence

For two elements                      , define:

convergent with limit

is an equivalence relation on (reflexive, symmetric, transitive)

equivalence class

Definition:

(well-defined)

(well-defined)

            number line

Properties: (A)  is an abelian group

(M)  is an abelian group

(D)  distributive law

(O)  is a total order, compatible with   and     Archimedean property

(C) Every Cauchy sequence is a convergent sequence. if

if


