ON STEADY

The Bright Side of Mathematics

Start Learning Reals - Part 2

Absolute value in \mathbb{Q} : $|x \cdot y| = |x| \cdot |y|$ (multiplicative) $|x + y| \leq |x| + |y|$ (triangle inequality) Cauchy sequence: $(x_n)_{n \in \mathbb{N}}$ with $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geq N$: $|x_n - x_m| < \epsilon$ Convergent sequence: $(x_n)_{n \in \mathbb{N}}$ with $\exists a \epsilon \mathbb{Q} \quad \forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N$: $|x_n - a| < \epsilon$ a is called the <u>limit</u> of $(x_n)_{n \in \mathbb{N}}$ ϵ reighbourhood of a $k_1 + k_2 +$

Since $(X_n)_{n \in \mathbb{N}}$ is convergent, there is $\mathbb{N} \in \mathbb{N}$ such that:

$$\forall n \geq N : |x_n - \alpha| < \varepsilon'$$

Therefore for all $n,m \ge N$:

$$|x_n - x_m| \leq |x_n - \alpha| + |\alpha - x_m| < 2 \cdot \varepsilon' = \varepsilon \implies (x_n)_{n \in \mathbb{N}}$$
 Cauchy
 $< \varepsilon'$ $< \varepsilon'$

Axiomatic solution: A non-empty set \mathbb{R} together with operations +, • and ordering \leq is called the real numbers if it satisfies:

(A)
$$(\mathbb{R}, +, 0)$$
 is an abelian group
(M) $(\mathbb{R}\setminus\{0\}, \cdot, 1)$ is an abelian group $(1 \neq 0)$
(D) distributive law $X \cdot (\gamma + 2) = X \cdot \gamma + X \cdot 2$
(0) \leq is a total order, compatible with + and \cdot , Archimedean property
(C) Every Cauchy sequence is a convergent sequence. $|X| := \begin{cases} X & \text{if } X \ge 0 \\ -X & \text{if } X < 0 \end{cases}$

The complete, whole, full number line IR