ON STEADY

Important

The Bright Side of Mathematics

 \rightarrow

Start Learning Reals - Part 3

complete number line R

Axioms of the reals: A non-empty set \mathbb{R} together with operations +, • and ordering \leq is called the real numbers if it satisfies:

(A)
$$(\mathbb{R}, \pm, 0)$$
 is an abelian group
(M) $(\mathbb{R}\setminus\{0\}, \cdot, 1)$ is an abelian group $(1 \neq 0)$
(D) distributive law $\times \cdot (\gamma \pm 2) = \times \cdot \gamma \pm \times \cdot 2$
(0) \leq is a total order, compatible with \pm and \cdot , Archimedean property
(C) Every Cauchy sequence is a convergent sequence. $|x| \coloneqq \begin{cases} \times & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
facts: There is a set with all these properties (Existence) (Construction)
and it is uniquely determined by these properties.

(Identification/ (Uniqueness) Isomorphism)

Show: For all $x \in \mathbb{R}$, we have: $0 \cdot x = 0$ (*) (by only using the axioms).

$$\frac{\text{Proof:}}{(O+O)\cdot X} = (O\cdot X) + (-O\cdot X) = ((O+O)\cdot X) + (-O\cdot X)$$

$$\begin{array}{l} \text{(D)} \\ = \left(0 \cdot x + 0 \cdot x \right) + \left(- 0 \cdot x \right) \\ \text{(A)} \\ = \\ \text{associativity} \end{array} \begin{array}{l} \text{(A)} \\ 0 \cdot x + \left(0 \cdot x + \left(- 0 \cdot x \right) \right) \end{array} \begin{array}{l} \text{(A)} \\ = \\ \text{inverse} \end{array} \begin{array}{l} \text{(A)} \\ 0 \cdot x + 0 \end{array} \begin{array}{l} \text{(A)} \\ = \\ \text{neutral} \end{array} \begin{array}{l} \text{(A)} \\ 0 \cdot x + 0 \end{array} \begin{array}{l} \text{(A)} \\ = \\ \text{neutral} \end{array} \begin{array}{l} \text{(A)} \\ 0 \cdot x \end{array}$$

Show: For all
$$x \in \mathbb{R}$$
, we have: $(-1) \cdot X = -X$ (by only using the axioms).
Proof: $-X \stackrel{(A)}{=} 0 + (-x) \stackrel{(*)}{=} 0 \cdot x + (-x) \stackrel{(A)}{=} ((-1) + 1) \cdot x + (-x)$
 $\stackrel{(D)}{=} (-1) \cdot x + 1 \cdot x + (-x) \stackrel{(A),(M)}{=} (-1) \cdot x + 0 \stackrel{(A)}{=} (-1) \cdot x$