ON STEADY

The Bright Side of Mathematics

Start Learning Reals - Part 4

(Make every Cauchy sequence convergent)

Construction: $\mathbb{Q} \longrightarrow \mathbb{R}$

$$C := \begin{cases} (x_n)_{n \in \mathbb{N}} & \forall n \in \mathbb{N} : x_n \in \mathbb{Q} \text{ and } (x_n)_{n \in \mathbb{N}} \text{ is a Cauchy sequence} \end{cases}$$

For two elements $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$, define:

$$(a_n)_{n \in \mathbb{N}} \sim (b_n)_{n \in \mathbb{N}} : \iff (a_n - b_n)_{n \in \mathbb{N}}$$
 convergent with limit 0

 $\Rightarrow \sim \text{ is an equivalence relation on } \mathcal{C} \quad (\text{reflexive, symmetric, transitive})$ $\Rightarrow \text{ equivalence class } \left[(X_n)_{n \in \mathbb{N}} \right] := \left\{ (a_n)_{n \in \mathbb{N}} \right| (a_n)_{n \in \mathbb{N}} \sim (X_n)_{n \in \mathbb{N}} \right\}$ $\text{Definition: } \mathbb{P} := \left\{ (x_n)_{n \in \mathbb{N}} \right\} = \left\{ (x_n)_{n \in \mathbb{N}} \right\}$

$$\left[\begin{pmatrix} \alpha_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n} + b_{n} \end{pmatrix}_{n \in \mathbb{N}} \right]_{\sim} + \left[\begin{pmatrix} \alpha_{n}$$