ON STEADY

Unbounded Operators - Part 1

Motivation: • partial differential equations

• quantum mechanics: one needs operators X, P with $XP - PX = i \cdot I$

<u>Definition</u>: Let $(X, \|\cdot\|_{X}), (Y, \|\cdot\|_{Y})$ be normed spaces (same field $F \in \{R, C\}$) and $\mathbb{J} \subseteq X$ subspace.

A linear map $T: \mathbb{J} \longrightarrow Y$ is called an <u>operator</u>.

Other notations: $T: X \supseteq \mathbb{D} \longrightarrow Y$ $T: X \longrightarrow Y$ with domain \mathbb{D} (T, \mathbb{D}) or T with $\mathbb{D}(T) = \mathbb{D}$ Moreover: T is called <u>densely defined</u> if $\overline{\mathbb{D}}^{\|\cdot\|_X} = X$.

