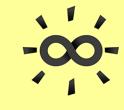
ON STEADY

The Bright Side of Mathematics



Unbounded Operators - Part 10

 $T: X \supseteq D(T) \longrightarrow Y$ densely defined \Longrightarrow adjoint exists:

$$(X,Y)$$
 Banach spaces $T': Y' \supseteq D(T') \longrightarrow X'$

$$(X,Y)$$
 Hilbert spaces $T^*: Y \supseteq D(T^*) \longrightarrow X$

<u>Definition:</u> Let $X = L^2(\mathbb{R}, \mathbb{C}) \leftarrow \text{square-integrable functions} \int |f(x)|^2 dx < \infty$ with respect to the R
one-dimensional Lebesgue measure

Let $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$ be a continuous function.

Then $M_{\psi}: X \supseteq \mathbb{D}(M_{\psi}) \longrightarrow X$ denotes the <u>multiplication operator</u>: $f \mapsto M_{\varphi} f$ with $(M_{\varphi} f)(x) = \varphi(x) f(x)$

for $x \in \mathbb{R}$ almost everywhere

$$\mathbb{D}(M_{\varphi}) := \left\{ \int \in L^{2}(\mathbb{R}, \mathbb{C}) \mid \varphi \cdot f \in L^{2}(\mathbb{R}, \mathbb{C}) \right\}$$

$$\text{dense in } L^{2}(\mathbb{R}, \mathbb{C})$$

Adjoint of the multiplication operator: $(M_{\psi})^* : X \supseteq \mathbb{D}((M_{\psi})^*) \longrightarrow X$ $\left\{g \in X \mid \text{ there is } \widetilde{f} \in X \text{ with} \leqslant g, M_{\psi}f\right\} = \left\langle\widetilde{f}, f\right\rangle \text{ for all } f \in \mathbb{D}(M_{\psi})\right\} \text{ with } \left(M_{\psi}\right)^{*}g = \widetilde{f}$

Is it a multiplication operator as well?

$$\langle g, M_{\psi}f \rangle = \int_{\mathbb{R}} \overline{g(x)} \psi(x) f(x) dx = \int_{\mathbb{R}} \overline{\psi(x)} g(x) f(x) dx = \langle M_{\overline{\psi}}g, f \rangle$$

for all $f, g \in \mathbb{D}(M_{\psi}) = \mathbb{D}(M_{\overline{\psi}})$

First result: $M_{\overline{\psi}} \subseteq (M_{\psi})^{\tau}$

 $g \in \mathbb{D}((M_{\varphi})^*) \implies \overline{\varphi} \cdot g \in L^{2}(\mathbb{R}, \mathbb{C})$

Note: $g \in L^2$, h bounded $\Longrightarrow h \cdot g \in L^2$

Make $\overline{\psi}$ bounded? Take $\psi_n: \mathbb{R} \longrightarrow \mathbb{C}$ $\rightarrow \gamma_n \overline{\varphi}$ is bounded

 $(\gamma_h \overline{\varphi})(x) \xrightarrow{h \to \infty} \overline{\varphi}(x) \text{ for } x \in \mathbb{R}$

For $f \in \mathbb{D}(M_{\psi})$, $g \in \mathbb{D}(M_{\psi})$:

$$\langle \gamma_n (M_{\psi})^* g, f \rangle = \int_{\mathbb{R}} \overline{\gamma_n(x) (M_{\psi})^* g(x)} f(x) dx$$

$$=\langle (M_{\psi})^* g, \gamma_n f \rangle = \langle g, M_{\psi}(\gamma_n f) \rangle$$

$$= \int_{\mathbb{R}} \overline{g(x)} \varphi(x) \gamma_n(x) f(x) dx$$

 $= \int \overline{\overline{\varphi(x)} \, \gamma_n(x) \, g(x)} \, f(x) \, dx = \langle \gamma_n \, \overline{\varphi} \, g \, , f \rangle$ $\stackrel{\mathsf{M}_{\varphi}) \text{ dense}}{\Longrightarrow} \gamma_{\mathsf{n}} (\mathsf{M}_{\varphi})^{*} g = \gamma_{\mathsf{n}} \overline{\varphi} g \Longrightarrow (\mathsf{M}_{\varphi})^{*} g = \overline{\varphi} g \in L^{2}$ $\mathbb{D}(M_{\psi})$ dense

Final result: $(M_{\phi})^* = M_{\overline{\phi}}$