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Unbounded Operators — Part 1

Linear Algebra Real Analysis

N4

Functional Analysis

e vpartial differential equations

. quantum mechanics: one needs operators X, T with
XP-PX =¢T
Let (X, I1,), (Y, Iy ) be normed spaces (same field [F<]R,C})
and DS X subspace.
A linear map | : D —> Y s called an operator.
Other nofations: « T :X2D — Y
T X — Y  with domain ]
' (T,ID) or 1 with D(T) =

|
Moreover: | is called densely defined if J =X .

Ran(T) := iTx | XG-:D’g < Y subspace
Ker(T) : = {XGD | Tx = (),k = x subspace

1 is called bounded if 3C>0 VxeD : “TXHY <C ”x“x

T is called unbounded if YC>0 FxeD : 1Txlly > C- [|x1,

Recall: T is bounded <> T is continuous at all points xeD

Therefore:

T is unbounded <=> T is not continuous (at no point xeD )
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Unbounded Operators — Part 2

Recall:  operator | : X —> Y with \P(T)::D

means: T:D—Y linear map

Faot:  1f Ker(T) = {0l , then T:Y—=X witn DT") = Ran(T)

L—> always defined as an operator

Examples: X = Y = C([O,ﬂ) (with supremum norm 1l oo )

@ T:X =Y wtn D) = C'(lA)
TX — X\ 1/\

unbounded operator ﬂ

ITl = sup [Txll, = sup [ <]
|[x1]gq=1 IIx1| =1

&

®) X — Y witn D) :{xeﬁ([o,ﬂ) ‘ X(O):O}
Sx = X

notations: S C T
'Q the operator | is an extension of §

the operator § is a restriction of |

Nofe: - Ker(T) £ ():0} not injective!

-1
Ker(S) :iO’& injective: :> S exists

T is densely defined < Cj(\—_ocﬂ) _ C(\__O:ﬂ))
e S s not densely defined

II-1l
[: -]
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Unbounded Operators — Part 3

Recall:  operator | - X QD(T) —> Y (linear map between normed spaces)

. Y A
{~=> subset in XXY graph of T

N

7 /><
araph of T+ G_:= ()€ XxY [ xeD(T) , Tx =y}

XXY normed space with ”(X,y)”xw-.: ||x||x+ ||>/||Y

Definition:  An operator | = X _:ED(T) —> Y is called a closed operator if

the graph GT is closed (in the normed space XXY).

Note: T closed <::> for each sequence (XO C :DQT) with
X, = xe X |, Tx,— YeY,

we have:  X& :DQT) and  [x = Y

Prooft: GT closed <:> for each sequence QXMTXAQ GT
that is convergent in XXYwiTh limit

(x,y)e XxY,
we have: (X, >/)€ GT .
VWF\) and Tx :>/

Remember: T : X — Y \ith :DQT‘) :>< bounded => closed operator
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Unbounded Operators — Part 4

Closed operator: T : X D D(T) —> Y  oclosed

<:> GT:: {(x,y)EXxY | XC:D(T) ; Tx :y} closed

Closable operator: T: XD D(T) — Y closable

closure of T

<:> G_T is the graph of an operator |

Proposition: T X ) D(T) — Y closable

<i> GT is a graph (mof possible (0,0) , (0,)’) € G_T tor y#O)

<:> 1f (O/)’> € G__]_ ! then y =0, GT:: {(x,y)(-:XxY | xe D(T) , Tx =>/}

<:> For each (XQ < :D(T) with X, > 0 and Txh_>y'

we have Y::O.

Define | for a closable operator | : X D D(T) — Y :

:DQT) = {xe X ‘ E\(Xh\) - :DQT\) : X, > X and TX, comvevqem’r}

TX = lim TX, operator: (o\oswe of T>

n—> 00

= T<T
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Unbounded Operators — Part s

For each (X,,) < :DQT\) with

X,—> 0 and Tx —> Y

T X = D(:T) — Y closable <:>

we have: )/_—_ J.

. 1
Example: X _ l (|N, @) , e e 8 canonical unit vectors
N (0l1;01 0/)

T: X20(1) — C , D(T) = span {ed ‘ ‘)eINz

e >

>N& — >N
J J

”T” = sup "TXHC = sup | —|—6‘3| = sSup \) = & unbounded
lIxn, =4 JEN JEN operator:
y
Closable operator? not continuous at ()

Choose (Xh) < DQT) with  X,=> 0 and TX,7> 0.

Choose ¢ >0 and subsequence (th) such that: h—)(,,Ik => €
5 th k—>m\ 0
Define: = Txnk >
Then: T2, = 1 forall keN ror esh (%) < D) with
\\y X,=> 0 and  Tx, —>Y,
::_> T is not closable we havery=0.
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Unbounded Operators — Part &

Closed Graph Theorem: X'Y Banach spaces | T X Q:D(T) —> Y operator

with D(T) closed (e,q. D(T) = X)

Then: T closed <:> T continuous (bounded)

Proof: Assume: :D(T) = X.

<<:) Choose <X,,\) - :DQT) with X, —> Xe X and TX,,% )’€Y

T continuous

= y _lim T(x,) = T(limx,) = Tx

h=> 00 o

:> X€E :DQT) and % = Y :> T closed

(:>> Assume | is closed :> G_I_ is closed in XXY :> (GT‘”.“X“D za;ga;c;h

Define operators: ?X: GT% X and ?Y f 61—9 Y

linear + bounded

(x,y) > x (xiy) =y
Bounded \\/_Y_\J
Inverse .. :
Theorem bijective!
Functional Analysis N - . .
— Part 27 :> ?X : X — GT is continuous (bounded operator)
X —> (%, Tx)

-1

—l_ N
X_\ > Y ‘|— — ?Y ?X composition
AR A “

continuous maps

:> T continuous (bounded)
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Unbounded Operators — Part 1

X,Y Banach spaces, | @ X Q:D(T) —> Y operator

Closed Graph Theorem: _'D(T) = X :>< T closed <:>

Example:  functional | X —> (E unbounded (see part s5)
L> extend: :D(T) = X
:> T wot closed

Proposition: X,Y Banach spaces, T: X Q:D(T) —> Y operator,

Then: 1 closed <:> (:D(T), "“T> complete
AN

\* graph norm

<= Il + 17l
Proot: J: (:D(T), "”T> E— (é - xy> } \meav
bueohve
X +—> (x,Tx

[9xll,,, = 0GBl = Bl + 0Ty = Il

:> J is an isometric isomorphism

:D(T), "”T> complete <:> (GT , “‘”XXY> complete

bou\noleol>

<:> <GT , ”.”XXY> closed in XXY

<:> T closed
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Unbounded Operators — Part ¢

For bounded operators: | : X —=> Y  ~> *. Y — X ad joint

H:Eeﬁ sgaces <)’ / TX>Y — <T*>/ ! X>X

T X —> Y ~—S> ); Y) —> ><3 adjoint
N ,
Banach spaces T (y’)(x) — y\(TX>

\
for )/\é;Y , xe K

Proposition: X,Y Banach spaces, | : X Q:D(T) —> Y densely defined operator
—D(T) = X

) )
Then there is an operator T : Y)QD(T\) —= X with

y\(TX> = T)(y’)(x) for xe :D(T)) y‘e D(T\) .

The domain :D(T\) can be chosen maximally,

Proof: set D(T"):= {)"6 Y ‘““’”e s XeX with V(Tx) = X(x) %o erD(T)}

and define: T)(YW) _—

Well—defined? Assume there are x:,x:e)(} with y‘(Tx> = x:(x)
Y'(Tx) = %09

= x(x) = x;(x) for all xe D(T)
= (1K) =0 wand) = (K-%)6) =0

continuity

for all xe D(T)

for all Xe X

) )
:> x1.:xz (]



For Hilbert spaces: X'Y Hilbert spaces, T X Q:D(T) —> Y densely defined operator
D) = X

:D(T*) — {’YGY ‘ UECRE ’X'EX with <>’,TX>Y = <;Z / X>X For all x€:D(T)}

T*(y) t— X
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Unbouhded O?Perators - Part 9

X, Y
T: X2DM)— Y

Banach spaces

densely defined operator

= T Y op(1) = X

(Banhach space) adjoint operator

)
Connection between |  and T*:

Y | 7N | X

lCY lcx

V' 7P | Y

X, Y
T:X2D(M)— Y

Hilbert spaces

densely defined o?perator

= T% ¥ 2D(1) = X

(Hilbert space) adjoint operator

)
Riesz representation theorem: >< — X
(for Hilbert spaces) antilinear /
isometric
isomor phism
//<><|

Cy: X=X, x> <x o2

) X
CY: Y%Y ; ylﬁ<y,>Y:<)/|

C_X1 T Cy(y) = C_X1 T (Y1) tor yeD(T)

where T)(<y|)(><) = <y,T><>Y
for xeD(T) = T, X>Y

T = Gy

— T*y

= T = TG



Proposition: X,Y Bahach spaces Nk X QZD(T) S Y densely defined o?perator,

Then: T < S :> \ \

'\

< (T)C :D(S) S extension of T ) < )D D S) S restriction o‘FT)

Sx = Tx for al xe D(T) Ty for all y'eD(S)

And for Hilbert spaces: | = § —> T* ' S*

Proof: :D(S\) o iy\e Y\ "rhere is X'€ x) with y\(S X) = x)(x) for all XG.:D(S)}

C {y\e Y\ "fheve is X\E X) with y\(—rx> = x)(x) for all XG.:D(T)}
— :D(T\) O
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Unbouhded Operators - Part 10

T: X2D(T) — Y densely defined =—> adjoint exists:
(X,Y Bahach SPaceS> T): Y):_Q:D(T\) —> ><3
(X,Y Hilbert sPaoes) T% Y 2D(1) — X

Definition: Let X — U‘(R,@) & square-infegrable functions f|§-(><)]tdx <o

with respect to the R
onhe-dimensional Leb653ue measure

Hilbert space with inner product:
<S> = fmj(x)dx
R

Let LF: fR%(D be a conhtinuous function.

Then MLF x QD(M?) —> X denotes the multiplication operator:
- M‘PJC with (MKP5>(X) = Lf)(x) £(x)

for x€ R almost everywhere
:D(Mtp> = {S:G B(R/C) | LFJC € E(R/@)}
\ dense in U(R,C)

*
Adjoint of the multiplication operator: MLP : X Q:D( M‘P*) — X
V4 %

ijé‘x | there is§6X wi’rh<lekf§>: <§15> for a\|§€:D(Ml{,)} with MLP 9 = ?




Is it a multiplication operator as well?

o M 5> zgjcxmxmxw :%WW Fdx =Mg9, 5y

for all Jc,j S :D(MY)Z:D(MQ)

First result: M- & M

Y !
To show: g€ :D( M‘l’*) —> ?j € LL(R/@)

y) 1
Proof: Note: je L) 1'\ bounded :> L\3€L

”~

Make ? bounded? Take f\rh-_ R— C /

f 1
L> ’Yh? is bounded ': : N

("Yh\.f) )(x) Lidial LF(X) for xe R

For e D(MY),jefD( M, BE

Mg 5 = S My a0 504
N gw“\/

_<Mv3 Y E = <Sr (p 5)>

— 5(—X) (x) h(x)gc(X)o\x
J30 gtaree

_ é?(x)wh(x)ﬁ(x) FRAx =By, f
D(My) dense /\V“B;1

— M = by = Mg =73 el

Final result: M‘f’ — M?



