

Weierstrass M-test

 \longrightarrow comparison test for uniform convergence

Theorem: D set, $f_{k}: D \rightarrow \mathbb{C}$ functions for each $k \in \mathbb{N}$. If there are constants $M_{k} \ge 0$ such that $\sum_{k=1}^{\infty} M_{k} < \infty$ and $|f_{k}(x)| \le M_{k}$ for all $k \in \mathbb{N}$, $x \in D$, then: $\sum_{k=1}^{\infty} f_{k}$ is uniformly convergent $\left(\sum_{k=1}^{\infty} |f_{k}| \text{ is uniformly convergent}\right)$ More precisely: $S: D \rightarrow \mathbb{C}$, $x \mapsto \sum_{k=1}^{\infty} f_{k}(x)$ is well-defined and $\|S - \sum_{k=1}^{n} f_{k}\|_{\infty} \xrightarrow{h \gg \infty} 0$ $\int \sum_{k=1}^{n} f_{k} = \int_{k}^{n} f_{k} = \int_{k}^{n} f_{k} = \int_{k}^{n} f_{k}$ Proof: Cauchy criterion: $\sum_{k=1}^{\infty} M_{k}$ convergent $\Leftrightarrow \forall k > 0$ $\exists N \in \mathbb{N} \quad \forall h \ge m \ge \mathbb{N}$: $\left|\sum_{k=1}^{n} M_{k}\right| < \epsilon$

For a given $\varepsilon > 0$, we can choose $N \in \mathbb{N}$ as above.

For every
$$X \in \mathbb{D}$$
:

$$\left| \sum_{k=m}^{n} f_{k}(x) \right| \stackrel{\Delta \text{-inequality}}{\leq} \sum_{k=m}^{n} \left| f_{k}(x) \right| \leq \sum_{k=m}^{n} M_{k} < \varepsilon$$

$$S: \mathbb{D} \longrightarrow \mathbb{C}$$
, $x \mapsto \sum_{k=1}^{\infty} f_k(x)$ exists:

Hence: For a given $\varepsilon > 0$, we can choose $N \in \mathbb{N}$, $n \ge N$ as above.

$$\| S' - \sum_{k=1}^{n} f_{k} \|_{\infty} = \sup_{X \in \mathcal{D}} \left| S'(X) - \sum_{k=1}^{n} f_{k}(X) \right| = \sup_{X \in \mathcal{D}} \left| \lim_{k \to \infty} \sum_{k=1}^{n} f_{k}(X) - \sum_{k=1}^{n} f_{k}(X) \right|$$

$$= \sup_{X \in \mathcal{D}} \lim_{k \to \infty} \left| \sum_{k=1}^{n} f_{k}(X) - \sum_{k=1}^{n} f_{k}(X) \right| = \sup_{X \in \mathcal{D}} \lim_{k \to \infty} \left| \sum_{k=n+1}^{n} f_{k}(X) \right|$$

$$\leq \varepsilon$$

$$\Rightarrow \| S' - \sum_{k=1}^{n} f_{k} \|_{\infty} \xrightarrow{h \to \infty} 0$$

$$f_{k} \colon \mathbb{R} \to \mathbb{R} , \quad f_{k}(X) = \frac{\cos(kX)}{k^{2}} , \quad \left| f_{k}(X) \right| \leq \frac{1}{k^{1}} \text{ for all } X \in \mathbb{R}$$

$$\sum_{k=1}^{\infty} \frac{1}{k^{2}} < \infty \xrightarrow{\text{Weilerstrass M-test}} \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{2}} \text{ converges uniformly}$$

Example: