Problem 1:
Show that the function fgiven by
is continuous at $x=0$

Problem 2: For which values a, b is the following function continuous?

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x):= \begin{cases}x^{4}-4 & \text { if } x \leq-2 \\
a x+b & \text { if }-2<x<4 \\
\sqrt{x} & \text { if } 4 \leq x\end{cases}
\end{aligned}
$$

Problem 3:
Let $I=[0,1]$ and $f: I \rightarrow I$ be continuous.
(a) Show that f has a fixed point $\tilde{x} \quad(f(\tilde{x})=\tilde{x})$
(b) Show that for $f: \mathbb{R} \rightarrow \mathbb{R}$ the statement in (a) is not correct.

Problem 4: $\quad f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=x(1-x)$
Show that f is continuous with the $\varepsilon-\delta$-definition.

Problem 5:
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous in x_{0}.
Show by using- the $\varepsilon \cdot \delta$-definition that, if $f\left(x_{0}\right)>0$, there exists $\delta>0$ such that $f(x)>0$ for all x in $\left(x_{0}-\delta, x_{0}+\delta\right)$.

Problem 6: $\quad f_{n}(x)=\frac{n x}{1+|n x|}$ continuous? What about the pointwise limit?

Problem 7: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz continuous.
Show by using the ε - δ-definition that f is also continuous on \mathbb{R}.

