BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Problem 1: Find a function $f \in C^2(\mathbb{R})$ with $f \notin C^3(\mathbb{R})$.

Problem 2:

(a) Use the differential quotient to determine the derivative of

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \times \mapsto \times^{n}, n \in \mathbb{N}$$

(b) Consider the functions $f, g : \mathbb{R} \longrightarrow \mathbb{R}$

With f differentiable in x_o and $f(x_o) = 0$ and g continuous in $X_{\bullet} = O$.

show that $\int g$ is differentiable in x_{a} .

Problem 3: Show that the function $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$ given by $\int (x) = x^2 e^{\sin(x)}$

has 3 extrema.