Problem 1:
Find a function $f \in C^{2}(\mathbb{R})$ with $f \notin C^{3}(\mathbb{R})$.

Problem 2:
(a) Use the differential quotient to determine the derivative of $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^{n}, n \in \mathbb{N}$
(b) Consider the functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ with f differentiable in x_{0} and $f\left(x_{0}\right)=0$ and g continuous in $X_{0}=0$. Show that $f \cdot g$ is differentiable in x_{0}

Problem 3:
Show that the function $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ given by

$$
f(x)=x^{2} e^{\sin (x)}
$$

has 3 extrema.

