BECOME A MEMBER ON STEADY

Problem 1:

The Bright Side of Mathematics

For which X are the following functions defined and differentiable?

Calclulate their respective derivatives.

 $\int_{1}^{1} \left(x \right) = \frac{x^{2} - e^{(x^{2})}}{x^{2} + (e^{x})^{2}}$ $\int_{1}^{1} \left(\frac{1}{x} \right) = \frac{x^{2} - e^{(x^{2})}}{x^{2} + (e^{x})^{2}}$ $\int_{1}^{1} \left(\frac{1}{x} \right) = \frac{1}{x^{2} + (e^{x})^{2}}$

 $\int_{1}^{1} (x) = \frac{\left[2x - e^{(x^{2})} \cdot 2x\right] \left[x^{2} + (e^{x})^{2}\right] - \left[x^{2} - e^{(x^{2})}\right] \left[2x + 2e^{2x}\right]}{\left[x^{2} + (e^{x})^{2}\right]^{2}}$

 $u'(x) = 2x - e^{-(x^2)} \cdot 2x \qquad (Chan rule)$

Problem 2:

Problem 3:

Problem 4:

Problem 3:

 $\int_{1}^{1}(x) = \frac{1}{2} \left(1 + x\right)^{\frac{1}{2}}$

Taylor polynomial:

 $\sqrt{1+x}$

 $\int (x) = \sqrt{1 + x}$

Problem 2:

Problem 4:

 $f(x) = f(-x) \times 6R$

Sold: $f(x) = -f(-x) \times R$ Conter
Example: $(1 + x) = 3x^{2} \text{ even}$ (-1) (-1)

 $\sigma: \mathbb{R} \to \mathbb{R}$, $x \mapsto (-x)$ is diffile $\sigma'(x) = -1$

5 even: f(x) = f(-(x)) = f(-(x)) (I) \$ odd: f(x) = (-(x)) = f(-(x))

Problem 2: a Show that the derivative of an even function $f: \mathbb{R} \to \mathbb{R}$ is odd.

a) $f'(x) = (f \circ \sigma)'(x) = f'(\sigma(x)) \cdot \sigma'(x) = f'(-x) \cdot (-1)$ even

that rule $f'(x) = (\sigma \circ f \circ \sigma)'(x) = \sigma'(f \circ \sigma(x)) \cdot (f \circ \sigma)'(x) = (-1) f'(-x) \cdot (-1)$ b) $f'(x) = (\sigma \circ f \circ \sigma)'(x) = \sigma'(f \circ \sigma(x)) \cdot (f \circ \sigma)'(x) = (-1) f'(-x)$ that rule $f'(x) = (\sigma \circ f \circ \sigma)'(x) = \sigma'(f \circ \sigma(x)) \cdot (f \circ \sigma)'(x) = (-1) f'(-x) \cdot (-1)$ that rule $f'(x) = (\sigma \circ f \circ \sigma)'(x) = \sigma'(f \circ \sigma(x)) \cdot (f \circ \sigma)'(x) = (-1) f'(-x) \cdot (-1)$

Show:
(a) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.

 \Rightarrow g constant $= C \in \mathbb{R}$

b) Show that the derivative of an odd function $f: \mathbb{R} \to \mathbb{R}$ is even.

Let $a,b \in \mathbb{R}$, a < b, $f: [a,b] \longrightarrow \mathbb{R}$ be a differentiable function.

(b) If $\int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{\infty} f(x)$ for all $x \in (a, b)$, then $\int_{-\infty}^{\infty} f(x) = ce^{x}$

 $g(x) := f(x) \cdot e^{-x}$, $g'(x) = f'(x) \cdot e^{-x} + f(x) \cdot (-1) e^{-x}$

 \Rightarrow $f(x) = c \cdot e^x$

mean value theorem

for a constant CER

at expansion point

(a) $\int_{1}^{1} \left(x \right) = \frac{x^{2} - e^{(x^{2})}}{x^{2} + (e^{x})^{2}}$ (b) $\int_{\mathbb{R}} (x) = \log(\cos(x))$ (c) $\int_{a}^{x} (x) = \arcsin(x) \cdot a^{x}$ for a > 0

Show that the derivative of an even function $f: \mathbb{R} \to \mathbb{R}$ is odd.

Find a rational number $x \in \mathbb{Q}$ such that $\left| x - \sqrt{\frac{3}{2}} \right| < 0.003$.

Let $a,b \in \mathbb{R}$, a < b, $f: [a,b] \longrightarrow \mathbb{R}$ be a differentiable function.

(a) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.

Find a rational number $x \in \mathbb{Q}$ such that $\left| x - \sqrt{\frac{3}{2}} \right| < 0.003$.

 $f^{\prime}(0) = \frac{1}{2}$

 $\int^{(4)} (x) = \frac{1 \cdot 3 \cdot 5}{2^4} \cdot (-1)^{4-1} (1+x)^{-\frac{7}{2}} \quad \Longrightarrow \quad \text{general formulation possible}$

 $T_3(h) = f(0) + \frac{1}{4!} f'(0) \cdot h' + \frac{1}{2!} f''(0) \cdot h^2 + \frac{1}{3!} f'''(0) \cdot h^3$

 $= 1 + \frac{1}{2^2} - \frac{1}{2^5} + \frac{1}{2^7} = \frac{2^7 + 2^5 - 2^2 + 1}{2^7} = \frac{160}{128 + 32 - 4 + 1}$

 $\left| \mathcal{R}_{3} \left(\frac{1}{2} \right) \right| = \frac{1}{4 \cdot \cancel{3} \cdot 2} \cdot \frac{1 \cdot \cancel{3} \cdot 5}{2^{4}} \cdot \left| \frac{1}{\left(1 + \cancel{3} \right)^{\frac{2}{1}}} \right| \left(\frac{1}{2} \right)^{4} \leq \frac{5}{2^{2} \cdot 2} \cdot \frac{1}{2^{4}} \cdot \frac{1}{2^{4}}$

 $1.1235... \leq \sqrt{\frac{3}{2}} \leq 1.2295...$

worst case

 $\leq 5 \cdot \frac{1}{211} = \frac{5}{2048} \leq \frac{5}{2000} = 0.0025 < 0.003$

 $f: \mathbb{R} \to \mathbb{R}$

 $f: \mathbb{R} \to \mathbb{R}$

Taylor polynomial: $f(x) = \sqrt{1+x}$

 $\int_{0}^{11} (x) = \frac{1}{2} \cdot \frac{1}{2} \cdot (-1) \cdot (1 + x)^{\frac{3}{2}} \qquad \int_{0}^{11} (0) = -\frac{1}{4}$ $\int_{0}^{11} (x) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot (-1)^{2} \cdot (1 + x)^{\frac{5}{2}} \qquad \int_{0}^{11} (0) = \frac{1}{2^{3}} \cdot 3$

he[0, 1/2]

 $T_3\left(\frac{1}{2}\right) = 1 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2}\left(-\frac{1}{2^2}\right) \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{3 \cdot 2} \cdot \frac{3}{2^3} \cdot \left(\frac{1}{2}\right)^3$

 $= \frac{157}{118} = 1.2265625 \approx \sqrt{\frac{3}{2}} \pm 0.003$

 $\mathcal{R}_{3}\left(\frac{1}{2}\right) = \frac{1}{4!} \, \xi^{(4)}(\xi) \cdot \left(\frac{1}{2}\right)^{4} \qquad \qquad \xi \in \left[0, \frac{1}{2}\right]$

(b) If $\int_{-\infty}^{1}(x) = \int_{-\infty}^{\infty}(x)$ for all $x \in (a, b)$, then $\int_{-\infty}^{\infty}(x) = ce^{x}$

Show that the derivative of an odd function $f: \mathbb{R} \to \mathbb{R}$ is even.

for a constant CER

1≤ irrational ≤ 2