• Title: Transformation Matrix

  • Series: Abstract Linear Algebra

  • Chapter: General vector spaces

  • YouTube-Title: Abstract Linear Algebra 8 | Transformation Matrix

  • Bright video: https://youtu.be/wTHQNYhxv-M

  • Dark video: https://youtu.be/CyW7Y5UFY10

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala08_sub_eng.srt missing

  • Timestamps

    00:00 Introduction

    00:47 Picture for change of basis

    02:01 What happens with the first unit vector?

    03:23 Representation by a matrix

    04:24 Change-of-basis matrix

    05:20 Picture for the transition matrix

    06:40 Inverse of the transformation Matrix

    07:10 Example with polynomials

    10:38 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be an $n$-dimensional complex vector space and $\mathcal{B}$, $\mathcal{C}$ be two bases of $V$. What is correct for the change-of-basis matrix $T_{\mathcal{C} \leftarrow \mathcal{B} }$?

    A1: $T_{\mathcal{C} \leftarrow \mathcal{B} } \in \mathbb{C}^{n \times n}$

    A2: $T_{\mathcal{C} \leftarrow \mathcal{B} } \in \mathbb{R}^{n \times n}$

    A3: $T_{\mathcal{C} \leftarrow \mathcal{B} } \in \mathbb{R}^{n-1 \times n}$

    A4: $T_{\mathcal{C} \leftarrow \mathcal{B} } \in \mathbb{C}^{n}$

    Q2: Let $V$ be an $n$-dimensional complex vector space and $\mathcal{B}$, $\mathcal{C}$ be two different bases of $V$. What is correct for the change-of-basis matrix $T_{\mathcal{C} \leftarrow \mathcal{B} }$?

    A1: $T_{\mathcal{C} \leftarrow \mathcal{B} }$ is invertible

    A2: $T_{\mathcal{C} \leftarrow \mathcal{B} }^{-1} = T_{\mathcal{C} \leftarrow \mathcal{B} }$

    A3: $T_{\mathcal{C} \leftarrow \mathcal{B} }$ is singular

    A4: $T_{\mathcal{C} \leftarrow \mathcal{B} } = T_{\mathcal{B} \leftarrow \mathcal{C} } $

    Q3: Let $V$ be an $3$-dimensional vector space and $\mathcal{B} = (b_1, b_2, b_3)$ be a basis of $V$. Define a new basis $\mathcal{C} = (2 b_1 + b_3, 4 b_1+ 2 b_2 + 2 b_3, b_2 + b_3)$. What is the change-of-basis matrix in this case?

    A1: $T_{\mathcal{C} \leftarrow \mathcal{B} } = \begin{pmatrix} 2 & 4 & 0 \ 0 & 2 & 1 \ 1& 2 & 1\end{pmatrix}^{-1}$

    A2: $T_{\mathcal{C} \leftarrow \mathcal{B} } = \begin{pmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \ 3& 1 & 2\end{pmatrix}$

    A3: $T_{\mathcal{C} \leftarrow \mathcal{B} } = \begin{pmatrix} 2 & 0 & 1 \ 4 & 2 & 2 \ 0& 1 & 1\end{pmatrix}$

    A4: $T_{\mathcal{C} \leftarrow \mathcal{B} } = \begin{pmatrix} 2 & 0 & 1 \ 4 & 2 & 2 \ 0& 1 & 1\end{pmatrix}^{-1}$

    A5: $T_{\mathcal{C} \leftarrow \mathcal{B} } = \begin{pmatrix} 2 & 4 & 0 \ 0 & 2 & 1 \ 1& 2 & 1\end{pmatrix}$

  • Back to overview page