• Title: Gram-Schmidt Orthonormalization

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 20 | Gram-Schmidt Orthonormalization

  • Bright video: https://youtu.be/wH3vLzlHQjc

  • Dark video: https://youtu.be/wRkRCgxLoFI

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala20_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a $\mathbb{F}$-vector space with inner product $\langle \cdot, \cdot \rangle$ and $U \subseteq V$ be a $k$-dimensional subspace. Which statement is always correct?

    A1: There is an ONB for $U$.

    A2: Each basis of $U$ is an ONB of $U$.

    A3: There is a basis of $U$ with $k+1$ elements, which are mutually orthogonal.

    A4: The Gram-Schmidt procedure is only applicable if $k \geq 2$.

    Q2: Consider $V = \mathbb{R}^3$ together with the standard inner product. Let’s apply the Gram-Schmidt procedure to the basis $$ \left( \begin{pmatrix} 1\ 1 \ 1 \end{pmatrix}, \begin{pmatrix} 0\ 1 \ 0 \end{pmatrix}, \begin{pmatrix} 0\ 0 \ 1 \end{pmatrix} \right) $$ What is the correct approach in calculations here?

    A1: You should change the order and apply Gram-Schmidt to $$ \left( \begin{pmatrix} 0\ 1 \ 0 \end{pmatrix}, \begin{pmatrix} 0\ 0 \ 1 \end{pmatrix}, \begin{pmatrix} 1\ 1 \ 1 \end{pmatrix} \right) $$ because then the first to steps are already done.

    A2: You should just apply the algorithm without much thinking. So first we normalize $\begin{pmatrix} 1\ 1 \ 1 \end{pmatrix}$.

    A3: You should just give up because Gram-Schmidt is impossible here.

  • Back to overview page