• Title: Introduction

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 1 | Introduction

  • Bright video: https://youtu.be/D_fE_mcByRE

  • Dark video: https://youtu.be/XrRxFJIkY1U

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft01_sub_eng.srt missing

  • Other languages: German version

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$. What is not a correct formulation for the Cauchy-Schwarz inequality?

    A1: $\langle x, y \rangle \leq \langle x, x \rangle \langle y, y \rangle $

    A2: $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle $

    A3: $|\langle x, y \rangle| \leq | x | | y| $

    A4: $\frac{\langle x, y \rangle}{| x | | y|} \in [-1,1] $ for $x \neq 0 \neq y$.

    Q2: Fourier series will be defined for periodic functions. For example, a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called $5$-periodic if the number $5$ is a period, which means $f(x + 5 ) = f(x)$ for all $ x \in \mathbb{R}$. Which of the following functions is not $5$-periodic?

    A1: $ f(x) = \sin(5 x)$

    A2: $ f(x) = 5$

    A3: $f(x) = \sin( 2\pi x) $

    A4: $f(x) = \cos( \frac{2\pi}{5} x) $

    Q3: Let $\langle \cdot, \cdot \rangle$ be the inner product on $\mathcal{P}([-1,1], \mathbb{R})$ given by $\langle f, g\rangle = \int_{-1}^1 f(x) g(x), dx$. Which polynomials are orthogonal to each other? Note that $f,g$ are called orthogonal if $\langle f, g\rangle =0$.

    A1: $f(x) = x^2$ and $g(x) = x$

    A2: $f(x) = x^2$ and $g(x) = 1$

    A3: $f(x) = x$ and $g(x) = x$

    A4: $f(x) = x^2$ and $g(x) = x^2$

  • Last update: 2024-11

  • Back to overview page


Do you search for another mathematical topic?