-
Title: Fourier Series in L²
-
Series: Fourier Transform
-
Chapter: Fourier Series
-
YouTube-Title: Fourier Transform 6 | Fourier Series in L²
-
Bright video: https://youtu.be/ZoZ7P60Zd-g
-
Dark video: https://youtu.be/DlPGOgLDZ20
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Python file: Download Python file
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ft06_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = 1 + \cos(2x)$ as a $2 \pi$-periodic function. What is $\mathcal{F}_1(f)$ in this case?
A1: $\mathcal{F}_1(f)(x) = 1$
A2: $\mathcal{F}_1(f)(x) = \cos(2x)$
A3: $\mathcal{F}_1(f)(x) = 1+\cos(2x)$
A4: $\mathcal{F}_1(f)(x) = \cos(x)$
Q2: Consider the function $f: (-\pi, \pi] \rightarrow \mathbb{R}$ given by $f(x) = x^2$ as a $2 \pi$-periodic function. What is not correct for the Fourier series and its coefficients $a_k$, $b_k$ for this case?
A1: $a_1 = 4$
A2: $b_k = 0$ for all $k \in \mathbb{N}$.
A3: $\mathcal{F}_0(f)(x) = \frac{1}{3} \pi^2 $
A4: $a_k = \frac{4}{k^2} (-1)^k$
-
Last update: 2024-11