-
Title: Riesz Representation Theorem
-
Series: Functional Analysis
-
YouTube-Title: Functional Analysis 15 | Riesz Representation Theorem
-
Bright video: https://youtu.be/rKiy6wEiQIk
-
Dark video: https://youtu.be/OVvugoEt2ZQ
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: fa15_sub_eng.srt missing
-
Timestamps
00:00 Introduction
00:29 Riesz representation theorem
02:45 Proof Existence
07:25 Proof Uniqueness
08:10 Proof Operator Norm
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $\ell: X \rightarrow \mathbb{F}$ be a continuous linear functional. What is correct?
A1: There is an element $x_\ell \in X$ with $\langle x_\ell, x \rangle = \ell(x)$ for all $x \in X$.
A2: If $\ell(x) = 0$, then $x$ is orthogonal to every $y \in X$.
A3: $x = 0$ implies $\ell(x) \neq 0$.
A4: For every $x \in X$, we have $\ell(x) = \langle x, x \rangle$.
Q2: Consider the functional $\ell \colon \mathbb{C}^2 \to \mathbb{C}$ defined via $\ell(x) = x_1 + x_2$ for all $x = (x_1, x_2) \in \mathbb{C}^2$. The Hilbert space $\mathbb{C}$ is endowed with the standard inner product. Which statement is not correct?
A1: $\ell(x) = \langle \binom{1}{1}, x \rangle$ for all $x \in \mathbb{C}^2$
A2: $| \ell | = \sqrt{2}$
A3: There exists $x_\ell \neq \binom{1}{1}$ with $\ell(x)= \langle x_\ell, x \rangle$ for all $x \in \mathbb{C}^2$
A4: $\mathrm{ker}(\ell) = \big{\binom{1}{1}\big}^\perp$
-
Last update: 2024-10