• Title: Riesz Representation Theorem

  • Series: Functional Analysis

  • YouTube-Title: Functional Analysis 15 | Riesz Representation Theorem

  • Bright video: https://youtu.be/rKiy6wEiQIk

  • Dark video: https://youtu.be/OVvugoEt2ZQ

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: fa15_sub_eng.srt missing

  • Timestamps

    00:00 Introduction

    00:29 Riesz representation theorem

    02:45 Proof Existence

    07:25 Proof Uniqueness

    08:10 Proof Operator Norm

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $\ell: X \rightarrow \mathbb{F}$ be a continuous linear functional. What is correct?

    A1: There is an element $x_\ell \in X$ with $\langle x_\ell, x \rangle = \ell(x)$ for all $x \in X$.

    A2: If $\ell(x) = 0$, then $x$ is orthogonal to every $y \in X$.

    A3: $x = 0$ implies $\ell(x) \neq 0$.

    A4: For every $x \in X$, we have $\ell(x) = \langle x, x \rangle$.

    Q2: Consider the functional $\ell \colon \mathbb{C}^2 \to \mathbb{C}$ defined via $\ell(x) = x_1 + x_2$ for all $x = (x_1, x_2) \in \mathbb{C}^2$. The Hilbert space $\mathbb{C}$ is endowed with the standard inner product. Which statement is not correct?

    A1: $\ell(x) = \langle \binom{1}{1}, x \rangle$ for all $x \in \mathbb{C}^2$

    A2: $| \ell | = \sqrt{2}$

    A3: There exists $x_\ell \neq \binom{1}{1}$ with $\ell(x)= \langle x_\ell, x \rangle$ for all $x \in \mathbb{C}^2$

    A4: $\mathrm{ker}(\ell) = \big{\binom{1}{1}\big}^\perp$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?