• Title: Multi-Index Notation

  • Series: Multivariable Calculus

  • YouTube-Title: Multivariable Calculus 15 | Multi-Index Notation

  • Bright video: https://youtu.be/Hiwth6HsUq0

  • Dark video: https://youtu.be/io-OJAWHAUo

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: mc15_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following objects is not a multi-index by our definition?

    A1: $$ \alpha = (-1,1)$$

    A2: $$ \alpha = (1,2)$$

    A3: $$ \alpha = (2)$$

    A4: $$ \alpha = (3,4,5,0,0,0)$$

    Q2: Let $\alpha = (0,1,2)$ be a multi-index. What is $\alpha!$ by our definition?

    A1: $2$

    A2: $1! 2! 3!$

    A3: $0$

    A4: $1$

    A5: $2! 2!$

    Q3: Let $\alpha = (0,5)$ be a multi-index. What is $x^{\alpha}$ for $x \in \mathbb{R}^2$?

    A1: $x_2^5$

    A2: $x_1^5$

    A3: $0$

    A4: $x_1 x_2^3$

    A5: $x_1^2$

    Q4: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by $f(x_1, x_2) = 2 x_1 x_2^5$ and $\alpha = (1,2)$. What is $D^\alpha f$?

    A1: $$ D^\alpha f(x_1, x_2) = 40 x_2^3 $$

    A2: $$ D^\alpha f(x_1, x_2) = x_2^3 $$

    A3: $$ D^\alpha f(x_1, x_2) = x_1 $$

    A4: $$ D^\alpha f(x_1, x_2) = 40 x_1 $$

    A4: $$ D^\alpha f(x_1, x_2) = 4 x_1 x_2^4 $$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?