• Title: Uniform Limits of Continuous Functions are Continuous

  • Series: Real Analysis

  • Chapter: Continuous Functions

  • YouTube-Title: Real Analysis 31 | Uniform Limits of Continuous Functions are Continuous

  • Bright video: https://youtu.be/llJruZnO-t4

  • Dark video: https://youtu.be/YUrHoTnMBhY

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra31_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    00:14 Uniform convergence for sequence of functions

    01:09 Theorem for uniform limit of continuous functions

    02:18 Proof of the Theorem

    07:41 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(f_1, f_2, f_3, \ldots)$ be a sequence of functions $f_n: I \rightarrow \mathbb{R}$. What is the correct definition for the uniform convergence to a function $f: I \rightarrow \mathbb{R}$?

    A1: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A2: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \geq N ~~ \forall x \in I ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A3: $ \displaystyle \forall x \in I ~~ \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall n \geq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    A4: $ \displaystyle \forall \varepsilon > 0 ~~ \exists N \in \mathbb{N} ~~ \forall x \in I ~~ \forall n \leq N ~ : ~ |f_n(x)-f(x)|<\varepsilon $

    Q2: Let $f_n: \mathbb{R} \rightarrow \mathbb{R}$ be continuous for all $n \in \mathbb{N}$. Which of the following cases can not occur?

    A1: $(f_1, f_2, f_3, \ldots)$ is pointwisely convergent to $f$ and $f$ is not continuous.

    A2: $(f_1, f_2, f_3, \ldots)$ is pointwisely convergent to $f$ and $f$ is continuous.

    A3: $(f_1, f_2, f_3, \ldots)$ is uniformly convergent to $f$ and $f$ is continuous.

    A4: $(f_1, f_2, f_3, \ldots)$ is uniformly convergent to $f$ and $f$ is not continuous.

    Q3: Let $f_n: \mathbb{R} \rightarrow \mathbb{R}$ be continuous for all $n \in \mathbb{N}$ and $(f_n)_{n \in \mathbb{N} }$ be pointwisely convergent to $f$ given by: $$ \displaystyle f(x) = \begin{cases} 1 &, ~~ x = 0\ 0 &, ~~x \neq 0\end{cases} $$ Which statement is true?

    A1: $| f - f_n |_\infty \xrightarrow{n \rightarrow \infty} 0 $

    A2: The $(f_n)_{n \in \mathbb{N} }$ is not uniformly convergent to $f$.

    A3: The $(f_n)_{n \in \mathbb{N} }$ is uniformly convergent to $f$.

  • Back to overview page