• Title: Chain Rule

  • Series: Real Analysis

  • Chapter: Differentiable Functions

  • YouTube-Title: Real Analysis 36 | Chain Rule

  • Bright video: https://youtu.be/g57hlenwvis

  • Dark video: https://youtu.be/gosLZFWrkf0

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra36_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable at $x_0$, is the function $f \circ g$ also differentiable at $x_0$?

    A1: Yes!

    A2: No, not in general.

    Q2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x_0$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $f(x_0)$. Which conclusion is correct?

    A1: $f \circ g$ is differentiable at $x_0$

    A2: $f \circ g$ is differentiable at $f(x_0)$

    A3: $g \circ f$ is differentiable at $x_0$

    A4: $g \circ f$ is differentiable at $f(x_0)$

    A5: $g \circ f$ is differentiable at $g(x_0)$

    Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x_0$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $f(x_0)$. What is the correct formulation for the chain rule?

    A1: $(f \circ g)^\prime(x_0) = f^\prime(x_0) \cdot g^\prime(x_0)$

    A2: $(f \circ g)^\prime(x_0) = f^\prime(x_0) + g^\prime(x_0) + f(x_0)$

    A3: $(g \circ f)^\prime(x_0) = f^\prime(x_0) \cdot g(x_0)$

    A4: $(g \circ f)^\prime(x_0) = g^\prime( f(x_0) ) \cdot f^\prime(x_0)$

    A5: $(g \circ f)^\prime(x_0) = g^\prime( f(x_0) ) \cdot g^\prime(x_0)$

  • Back to overview page