• Title: Examples of Derivatives and Power Series

  • Series: Real Analysis

  • Chapter: Differentiable Functions

  • YouTube-Title: Real Analysis 38 | Examples of Derivatives and Power Series

  • Bright video: https://youtu.be/93i7uKScVvc

  • Dark video: https://youtu.be/LT7GIbfTCwo

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra38_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct derivative for $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = n , x^n$ for $n \in \mathbb{R}$?

    A1: $f^\prime(x) = n x^n$

    A2: $f^\prime(x) = n^2 x^n$

    A3: $f^\prime(x) = n^2 x^{n-1}$

    A4: $f^\prime(x) = n(n-1) x^{n-1}$

    Q2: What is the correct derivative for the polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x^5 + 3 x^2 + 2 x$?

    A1: $f^\prime(x) = 5 x + 3 x^2 + 2$

    A2: $f^\prime(x) = 5 x^4 + 6 x + 2$

    A3: $f^\prime(x) = 5 x^4 + 6 x^2 + 2$

    A4: $f^\prime(x) = 5 x^3 + 6 x + 2$

    Q3: Let the power series $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \sum_{k=0}^\infty a_k x^k$. The radius of convergence is $\infty$. Which statement is not correct?

    A1: For all $x \in \mathbb{R}$, the series $\sum_{k=0}^\infty a_k x^k$ is convergent.

    A2: For all $x \in \mathbb{R}$, the series $\sum_{k=0}^\infty a_k x^k$ is absolutely convergent.

    A3: The sequence of functions given by $g_n: \mathbb{R} \rightarrow \mathbb{R}$, $g_n(x) = \sum_{k=0}^n a_k x^k$ is uniformly convergent to $f$.

    A4: For all $c \in \mathbb{R}$, the sequence of functions given by $g_n: [-c,c] \rightarrow \mathbb{R}$, $g_n(x) = \sum_{k=0}^n a_k x^k$ is uniformly convergent to $f$ on the interval $[-c,c]$.

    Q4: Let the power series $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \sum_{k=0}^\infty a_k x^k$. The radius of convergence is $\infty$. Is $f$ differentiable?

    A1: No, nowhere.

    A2: Yes, but only for the point $x = 0$.

    A3: Yes, everywhere.

  • Back to overview page