• Title: Derivatives of Inverse Functions

  • Series: Real Analysis

  • Chapter: Differentiable Functions

  • YouTube-Title: Real Analysis 39 | Derivatives of Inverse Functions

  • Bright video: https://youtu.be/h0nBAMhdSMk

  • Dark video: https://youtu.be/0cktpu5Hxjk

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra39_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is not a property of the exponential function $\exp: \mathbb{R} \rightarrow \mathbb{R}$?

    A1: $\exp$ is continuous.

    A2: $\exp(x+y) = \exp(x) \exp(y)$

    A3: $\exp$ is strictly monotonically increasing.

    A4: $\exp(2) = e^2$

    A5: $\exp: \mathbb{R} \rightarrow [0,\infty)$ is bijective.

    Q2: The logarithm function $\log: (0, \infty) \rightarrow \mathbb{R}$ is defined as the inverse function of $\exp: \mathbb{R} \rightarrow (0,\infty)$. Is $\log$ differentiable?

    A1: No, nowhere!

    A2: Yes, but only for $x_0 =1$.

    A3: Yes, everywhere.

    Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be invertible and differentiable at $x_0$. What is the correct inversion formula if $f^{-1}$ is also differentiable at $y_0 = f(x_0)$?

    A1: $ \displaystyle (f^{-1})^\prime(y_0) = f^\prime(x_0)$

    A2: $ \displaystyle (f^{-1})^\prime(y_0) = \frac{1}{f^\prime(x_0)}$

    A3: $ \displaystyle (f^{-1})^\prime(y_0) = \frac{1}{f^\prime(f^{-1}(x_0))}$

    A4: $ \displaystyle (f^{-1})^\prime(y_0) = (f^\prime(f^{-1}(x_0)))^{-1}$

    Q4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be invertible and differentiable at $x_0$. What is the correct assumption to conclude that $f^{-1}$ is also differentiable at $y_0 = f(x_0)$?

    A1: $f^{-1}$ is invertible at $y_0$

    A2: $f^\prime(x_0) \neq 0$

    A3: $f^\prime(x_0) \neq 0$ and $f^{-1}$ is continuous at $y_0$

    A4: $f^\prime(x_0) \neq 0$ or $f^{-1}$ is continuous at $y_0$

    A5: $f^\prime(x_0) = 0$ or $f^{-1}$ is continuous at $y_0$

  • Back to overview page