• Title: L’Hospital’s Rule

  • Series: Real Analysis

  • Chapter: Differentiable Functions

  • YouTube-Title: Real Analysis 42 | L’Hospital’s Rule

  • Bright video: https://youtu.be/KbS_cRToPFA

  • Dark video: https://youtu.be/F3bYc5Syy-o

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra42_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f,g \colon [a,b] \rightarrow \mathbb{R}$ be differentiable functions. What is the correct formulation for the extended mean value theorem?

    A1: There is $\hat{x}$ with $f^\prime(\hat{x}) = 0$.

    A2: There is $\hat{x}$ with $f^\prime(\hat{x}) = f(a)$.

    A3: There is $\hat{x}$ with $\frac{f^\prime(\hat{x})}{g^\prime(\hat{x})} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

    A4: There is $\hat{x}$ with $\frac{f^\prime(\hat{x})}{g^\prime(\hat{x})} = (f(b) - f(a) ) \cdot (g(b)-g(a))$.

    Q2: Let $f,g \colon [-1,1] \rightarrow \mathbb{R}$ be differentiable functions with $ g^\prime(x) > 0$ for all $x$ and $\lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)}$ exists. What is a correct implication using l’Hospital’s rule?

    A1: If $f(0) = g(0)$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.

    A2: If $f(0) \neq g(0)$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.

    A3: If $f(0) = g(0) = 0$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.

    A4: If $f(0) = g(0) = 1$, then $ \displaystyle \lim_{x \rightarrow 0} \frac{f(x)}{g(x)} = \lim_{x \rightarrow 0} \frac{f^\prime(x)}{g^\prime(x)} $.

    Q3: Let’s apply l’Hospital’s rule for the following limit for $a > 0$: $$ \lim_{x \rightarrow 0} \frac{ \log(1 + a x) }{ x } $$

    A1: $\frac{1}{a}$

    A2: $1$

    A3: $0$

    A4: $a$

    A5: $2a$

    Q4: Let’s apply l’Hospital’s rule for the following limit for $a > 0$: $$ \lim_{x \rightarrow 0} \frac{ \sin( a x) }{ a x } $$

    A1: $\frac{1}{a}$

    A2: $1$

    A3: $0$

    A4: $a$

    A5: $2a$

  • Back to overview page