![](/images/thumbs/small2/ra51.png.jpg)
-
Title: Riemann Integral - Definition
-
Series: Real Analysis
-
Chapter: Riemann Integral
-
YouTube-Title: Real Analysis 51 | Riemann Integral - Definition
-
Bright video: https://youtu.be/t8Hh73HxP1o
-
Dark video: https://youtu.be/o-jagNl7kto
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra51_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct definition for a bounded function $f$ being Riemann-integrable?
A1: $$ \sup \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \leq f \right} = \inf \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \geq f \right} $$
A2: $$ \sup \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \geq f \right} = \inf \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \leq f \right} $$
A3: $$ \sup \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \geq f \right} < \inf \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi < f \right} $$
A4: $$ \sup \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi \geq f \right} > \inf \left{ \int_a^b \phi(x) dx ~\bigg|~ \phi(x) \in \mathcal{S}( [a,b] ) , ~ \phi > f \right} $$
Q2: Let $\psi : [0,2] \rightarrow \mathbb{R}$ be a step function. Is $\psi$ Riemann-integrable?
A1: Yes!
A2: No!
-
Last update: 2025-01