![](/images/thumbs/small2/ra54.png.jpg)
-
Title: First Fundamental Theorem of Calculus
-
Series: Real Analysis
-
Chapter: Riemann Integral
-
YouTube-Title: Real Analysis 54 | First Fundamental Theorem of Calculus
-
Bright video: https://youtu.be/AKhlP6IHDLk
-
Dark video: https://youtu.be/wEd0hk-ejp4
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra54_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $F: \mathbb{R} \rightarrow \mathbb{R}$ be an antiderivative of $f$. Is $F$ differentiable?
A1: Yes!
A2: No, never!
A3: No, not necessarily.
Q2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = \cos(x)$. Which one the following functions is not an antiderivative of $f$?
A1: $F(x) = \sin(x) + 55$
A2: $F(x) = \sin(x)$
A3: $F(x) = \sin(x) - \pi $
A4: $F(x) = 2 \sin(x)$
Q3: What is derivative of the function $x \mapsto \int_0^x \cos(\exp(t)) , dt$
A1: $0$
A2: $\cos(x)$
A3: $\cos(\exp(x))$
A4: $\cos(\exp(x)) +1 $
A5: $\cos(\exp(\sin(x)))$
-
Last update: 2025-01