• Title: Proof of the Fundamental Theorem of Calculus

  • Series: Real Analysis

  • Chapter: Riemann Integral

  • YouTube-Title: Real Analysis 56 | Proof of the Fundamental Theorem of Calculus

  • Bright video: https://youtu.be/E4zieCbfdcs

  • Dark video: https://youtu.be/g82woOmPYoo

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ra56_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: [a,b] \rightarrow \mathbb{R}$ be a continuous function. What is the claim of the mean value theorem of integration?

    A1: There is $\hat{x} \in [a,b]$ with $\int_a^b f(x) dx = f(\hat{x})$.

    A2: There is $\hat{x} \in [a,b]$ with $\int_a^b f(\hat{x}) dx = f(\hat{x})$.

    A3: There is $\hat{x} \in [a,b]$ with $\int_a^b f(x) dx = f(\hat{x}) (b-a)$.

    A4: There is $\hat{x} \in [a,b]$ with $\int_a^b f(\hat{x}) dx = f(\hat{x})(a-b)$.

    Q2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $F: \mathbb{R} \rightarrow \mathbb{R}$ be given by $$ F(x) = \int_a^x f(t) dt ,.$$ What is correct for given real numbers $a,x$ and $h>0$?

    A1: There is $\hat{x} \in [a,x]$ with $F(x+h) = F(\hat{x})$.

    A2: There is $\hat{x} \in [x,x+h]$ with $F(x+h) - F(x) = f(\hat{x}) \cdot h$.

    A3: There is $\hat{x} \in [a,x-h]$ with $F(x+h) - F(x) = f(\hat{x}) \cdot h$.

    A4: There is $\hat{x} \in [x,x+h]$ with $F(x+h) - F(x) = f(\hat{x})$.

    Q3: What is the integral $\int_1^x \exp(t) , dt$?

    A1: $\exp(x) - 1$

    A2: $\exp(x) - \exp(1)$

    A3: $\exp(x)$

    A4: $2\exp(x) - \exp(1)$

  • Back to overview page