-
Title: Comparison Test for Integrals
-
Series: Real Analysis
-
Chapter: Riemann Integral
-
YouTube-Title: Real Analysis 61 | Comparison Test for Integrals
-
Bright video: https://youtu.be/yEp9BTDgOjk
-
Dark video: https://youtu.be/WoiYPegVj6M
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra61_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f,g: [0,\infty) \rightarrow [0,\infty)$ be functions such that the restrictions to compact intervals are Riemann-integrable. Which claim is correct?
A1: If $\int_0^{\infty} g(x) dx$ converges, then $\int_0^{\infty} f(x) dx$ converges.
A2: If $\int_0^{\infty} g(x) dx$ converges and $f \leq g$, then $\int_0^{\infty} f(x) dx$ converges.
A3: If $\int_0^{\infty} g(x) dx$ converges and $g \leq f$, then $\int_0^{\infty} f(x) dx$ converges.
A4: If $\int_0^{\infty} g(x) dx$ diverges and $g \leq f$, then $\int_0^{\infty} f(x) dx$ converges.
Q2: Let $f,g: [0,\infty) \rightarrow [0,\infty)$ be functions such that the restrictions to compact intervals are Riemann-integrable. Which claim is correct?
A1: If $\int_0^{\infty} g(x) dx$ diverges, then $\int_0^{\infty} f(x) dx$ diverges.
A2: If $\int_0^{\infty} g(x) dx$ diverges and $f \leq g$, then $\int_0^{\infty} f(x) dx$ diverges.
A3: If $\int_0^{\infty} g(x) dx$ diverges and $g \leq f$, then $\int_0^{\infty} f(x) dx$ diverges.
A4: If $\int_0^{\infty} g(x) dx$ diverges and $g \leq f$, then $\int_0^{\infty} f(x) dx$ converges.
Q3: Is the integral $\int_1^{\infty} \frac{1-x}{x^2} dx$ convergent?
A1: Yes!
A2: No!
-
Last update: 2025-01