-
Title: Integral Test for Series
-
Series: Real Analysis
-
Chapter: Riemann Integral
-
YouTube-Title: Real Analysis 62 | Integral Test for Series
-
Bright video: https://youtu.be/iCEKW61q5hk
-
Dark video: https://youtu.be/rbPhKSd5mA8
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Exercise Download PDF sheets
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ra62_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: [0,\infty) \rightarrow [0,\infty)$ be monotonically decreasing. The integral $\int_0^{\infty} f(x) dx$ converges if and only if $\sum_{k=0}^\infty f(k)$ converges.
A1: Correct!
A2: Not correct!
A3: Only correct if $f$ is never zero.
Q2: Let $f: [0,\infty) \rightarrow [0,\infty)$ be monotonically decreasing where the integral $\int_0^{\infty} f(x) dx$ converges. Which inequality is always correct?
A1: $$\sum_{k=0}^\infty f(k) - \int_0^{\infty} f(x) dx \geq f(0)$$
A2: $$\sum_{k=0}^\infty f(k) - \int_0^{\infty} f(x) dx \leq f(0)$$
A3: $$\sum_{k=0}^\infty f(k) - \int_0^{\infty} f(x) dx \geq f(1)$$
Q3: Does the series $\sum_0^{\infty} \frac{1}{\sqrt{k}}$ converge?
A1: Yes!
A2: No!
-
Last update: 2025-01