• Title: Natural Numbers (Successor Map and Addition)

  • Series: Start Learning Numbers

  • Parent Series: Start Learning Mathematics

  • YouTube-Title: Start Learning Numbers 2 | Natural Numbers (Successor Map and Addition)

  • Bright video: https://youtu.be/C9DLEHu1l-g

  • Dark video: https://youtu.be/1F5nAc4qe68

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: sln02_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: The natural numbers have the important successor map $s: \mathbb{N}_0 \rightarrow \mathbb{N}_0$. What is not a property of $s$?

    A1: $s$ is surjective.

    A2: $s$ is injective.

    A3: If $M \subseteq \mathbb{N}_0$ such that $0 \in M$ and $s[M] \subseteq M$, then $M = \mathbb{N}_0$.

    Q2: How is the addition $m+1$ defined?

    A1: $m+1 = s(m)$

    A2: $m+ 1 = s(m+1)$

    A3: $m = s(m+1)$

    Q3: Dedekind’s recursion principle is a fact we can use a lot in these foundations. What is the correct formulation for this when we have a set $A$, a map $h: A \rightarrow A$ and a point $a \in A$?

    A1: There is a unique map $f: \mathbb{N}_0 \rightarrow A$ with $f(0) = a$ and $f(n+1) = h(f(n))$.

    A2: There is a unique map $f: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(0) = a$ and $f(n+1) = h(f(n))$.

    A3: There is a unique map $f: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(0) = 0$ and $f(1) = h(f(n))$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?