• Title: Injectivity, Surjectivity and Bijectivity

  • Series: Start Learning Sets

  • Parent Series: Start Learning Mathematics

  • YouTube-Title: Start Learning Sets 6 | Injectivity, Surjectivity and Bijectivity

  • Bright video: https://youtu.be/CSzJchEvfpE

  • Dark video: https://youtu.be/i9ou6TObiXc

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: sls06_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Is the map $f: {1,2} \rightarrow {1}$ given by $f(1) = 1$ and $f(2) = 1$ injective und surjective?

    A1: It’s surjective but not injective.

    A2: It’s injective but not surjective.

    A3: It’s injective and surjective.

    A4: It’s neither injective nor surjective.

    Q2: Is the map $f: {1,2} \rightarrow {1, 2}$ given by $f(1) = 1$ and $f(2) = 2$ bijective?

    A1: Yes!

    A2: No!

    A3: One needs more information.

    Q3: Consider the bijective function $f: {1,2} \rightarrow {1, 2}$ given by $f(1) = 2$ and $f(2) = 1$. What is the correct inverse function?

    A1: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 2$ and $f^{-1}(2) = 1$.

    A2: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 1$ and $f^{-1}(2) = 2$.

    A3: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 1$ and $f^{-1}(2) = 1$.

  • Last update: 2024-11

  • Back to overview page


Do you search for another mathematical topic?