![](/images/thumbs/small2/sls06.png.jpg)
-
Title: Injectivity, Surjectivity and Bijectivity
-
Series: Start Learning Sets
-
Parent Series: Start Learning Mathematics
-
YouTube-Title: Start Learning Sets 6 | Injectivity, Surjectivity and Bijectivity
-
Bright video: https://youtu.be/CSzJchEvfpE
-
Dark video: https://youtu.be/i9ou6TObiXc
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: sls06_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Is the map $f: {1,2} \rightarrow {1}$ given by $f(1) = 1$ and $f(2) = 1$ injective und surjective?
A1: It’s surjective but not injective.
A2: It’s injective but not surjective.
A3: It’s injective and surjective.
A4: It’s neither injective nor surjective.
Q2: Is the map $f: {1,2} \rightarrow {1, 2}$ given by $f(1) = 1$ and $f(2) = 2$ bijective?
A1: Yes!
A2: No!
A3: One needs more information.
Q3: Consider the bijective function $f: {1,2} \rightarrow {1, 2}$ given by $f(1) = 2$ and $f(2) = 1$. What is the correct inverse function?
A1: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 2$ and $f^{-1}(2) = 1$.
A2: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 1$ and $f^{-1}(2) = 2$.
A3: $f^{ -1 }: {1,2} \rightarrow {1, 2}$ given by $f^{-1}(1) = 1$ and $f^{-1}(2) = 1$.
-
Last update: 2024-11